September 28, 2021 Task Sheet 1 David Merkley A02204704

Tasks

1. I calculated the central difference approximation in python. I have attached code below to show the table and code used.

The exact derivative is: 0.4161468365471424					
This is the list of differences between exact value and the approximate value:					
h-value: 1					
0.38260348236197905					
h-value: 0.5					
0.4075490368602161					
h-value: 0.01					
0.4161433686711291					
h-value: 0.001					
0.4161468019070469					
h-value: 0.0001					
0.41614681700608					
h-value: 1e-05					
0.4161465563279882					
h-value: 1e-0ó					
0.41600056732704616					
h-value: 1e-07					
0.3937555783673479					
h-value: 1e-08					
-0.27792935153087156					
n-value: 1e-09					
-54.678857558163536					
h-value: 1e-10					
-5550.282829452687					
n-value: 1e-11					
-555110.6800189051					
h-value: 1e-12					
0.0					
h-value: 1e-13					
-5551115122.293488					
h-value: 1e-14					
-1665334536937.7349					
h-value: 1e-15					
-277555756156288.3					
h-value: 1e-16					
0.0					
h-value: 1e-17					
0.0					

```
error.append(np.abs(dfVal - exactVal))
```

2. The graph shows how the error is reduced as h is approaching 0. It is around when h equals -10 when the approximation starts to fail. It goes all out of whack. As h goes above 0, we start to get a parabola, which shows that it is second order accurate.

3. I have attached pictures of my code for double machine epsilon and float machine epsilon. The first picture is the double machine epsilon, and the second is the float machine epsilon.

machineEpsilon 👌 構 main.py					
g		6	main.py $ imes$		
Proj	× I		Ģdef	double_machine_epsilon():	
	> II E				
				xapprox = x + E	
				error = abs(x - xapprox)	
				if error == 0:	
				E = E/2	
			¥	print(i, error)	
				main():	
				doopte_machine_epsiton()	
			mair		
			mari		
			dout	ole_machine_epsilon() > while i <= 100	
dure	Run: 🍦 main 🛛				
Stru			47 7.105427357601002e-15		
	ل بو		48 3.55	22/130/8800301E-13	
s		49 1.77635683964002505e-15 50 8.881784197001252e-16 51 4.440892098500626e-16 52 2 2296/46089258513a-16			
/orite					
F Fa					
*	»		52 2.22	04400472303130-10	

4. I created the files to eventually be put into a library.

5. I did my best to create a shared library picture below.

6. Shared libraries are very useful, they are libraries loaded by programs when they start. Every shared library has a real name and a "soname." It also saves memory and disk storage space. Along with making executable files easier to maintain. Updating a library updates all executable code that use the library.

Citations

https://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html http://osr507doc.sco.com/en/tools/ShLib_WhatIs.html